ANALYZING CUSTOMERS’ ACCEPTANCE TOWARDS TASK MANAGEMENT APPLICATION USING AFFECTIVE TECHNOLOGY ACCEPTANCE MODEL (ATAM)

Iwan Setiawan, Heri Soebana, Maskur*

Budi Luhur University, Indonesia
maskurrm@gmail.com*

PAPER INFO

ABSTRACT

Received: October 2021
Revised: December 2021
Approved: December 2021

Background: State the reason why the research needs to be conducted.

Aim: This study aims to explain and analyze the influence of user perceptions of PT Collega Inti Pratama employees on attitudes and use of Task Management applications.

Method: This study uses quantitative analysis and data sampling using the saturated sample method. Samples taken from the respondents’ data are users of the Task Management application. Data collection techniques using a questionnaire. In data analysis, researchers used multiple linear regression analysis techniques and path analysis in proving the mediating variable.

Findings: The results show that simultaneously Positive Affect and Negative Affect have an effect on Perceived Ease of Use. Perceived Ease of Use, Positive Affect and Negative Affect influence together on Perceived Usefulness. Perceived Usefulness and Perceived Ease of Use jointly affect Attitude Toward Using. Positive Affect, Negative Affect and Attitude Toward Using together influence Behavioral Intention.

KEYWORDS

Information system, task management, Technology Acceptance Model (TAM), Affective Technology Acceptance Model (ATAM)

INTRODUCTION

PT. Collega Inti Pratama (Collega) is an Information Technology (IT) company established since February 3, 2001, has been more engaged and focused on developing banking technology and has become the Market Leader for Core Banking System at Regional Development Bank (BPD) throughout Indonesia. As an IT company that develops applications and systems for banking, Collega implements a standard application development procedure known as the System Development Life Cycle (SDLC). The orientation of the system that Collega developed not only considers aspects of technology and product development but also time to serve, time to deliver and time to market to be more effective and efficient for partners.

SDLC is a series of activity stages that provide a model for the development and management of cycles of applications or software. The SDLC stage consists of initiation and planning stages, definition of needs, design, programming, trials, implementation, post-implementation, maintenance, and disposal review.

With the development of the times, especially in the IT industry caused by the development of competition, customer demands and job efficiency, requires changes in terms of job management so as to improve service products and the survival of the company. So Collega developed the Task Management application, so that the SDLC process can be controlled and run well and every document / data in each stage of SDLC can be recorded in the system.

Task Management applications are developed with ease in the flow arrangement of the work process. Each unit or department can determine the type of work that is in their respective...
units. Users of this application will get a notification via email if there is a job assigned by the supervisor concerned. Employers can also monitor job progress and conduct job reviews.

Looking at the usability and functionality of the Task Management application, it will greatly help increase effectiveness and efficiency in the work as well as improve the quality of operational services. However, the reality is that there are still some units and users who have not maximized the functionality and usability of the application. To address this, there needs to be a measurement of the level of acceptance and understanding in using the Task Management (TM) application, by measuring the behavior of its users.

In information systems there are several theories that can be used to study and measure user behavior in receiving information systems. And one of the most commonly used theories is TAM (Technology Acceptance Model) (Hartono, 2008: 14),

Davis defines TAM (Technology Acceptance Model) as a model designed to predict the acceptance of information technology to be used by users. So by using the TAM model, it can be estimated the factors that affect the acceptance of a technology by users. Individual acceptance of information technology can be determined by 2 main constructs owned by TAM in the form of perceived ease of use and perceived usefulness (Hartono, 2008: 111-112).

Users will feel satisfied using the Task Management (TM) application if they believe that the service is easy to use and can increase productivity which will then be followed by the attitude shown by the user. The individual perception and attitude of the user can determine the user's decision in choosing to use the Task Management (TM) application, which will then be able to shape the user's behavior in using the Task Management (TM) application in carrying out its operations or work. Behavior in information technology system theory is also referred to as the real usage application of Task Management (TM). Actual usage can be defined as a person's behavior in doing an activity / work as desired (Hartono, 2008: 117)

Hypothesis
1) Positive Affect on Behavioral Intention Task Management (TM)
2) Negative Affect on Behavioral Intention Task Management (TM)
3) Pengaruh Positive Affect terhadap Perceived Usefulness Task Management (TM)
4) Pengaruh Positive Affect terhadap Perceived Ease Of Use Task Management (TM)
5) Pengaruh Negative Affect terhadap Perceived Usefulness Task Management (TM)
6) Pengaruh Negative Affect terhadap Perceived Ease Of Use Task Management (TM)
7) Pengaruh Perceived Ease Of Use terhadap Perceived Usefulness Task Management (TM)
8) Pengaruh Perceived Ease Of Use terhadap Attitude Toward Using Task Management (TM)
9) Pengaruh Perceived Usefulness terhadap Attitude Toward Using Task Management (TM)
10) Pengaruh Attitude Toward Using terhadap Behavioral Intention Task Management (TM)
Impact of PA and NA on PU, PEOU and BI

Based on previous research conducted by Hoong, Thi and Lin (2017) that there is a significant impact of PA on BI, PU and PEOU. There was also a significant impact of NA on BI and PEOU but no impact of NA on PU was found.

H1: Positive Affect positively affects Behavioral Intention Task Management
H2: Negative Affect positively affects Behavioral Intention Task Management
H3: Positive Affect positively affects Perceived Usefulness Task Management
H4: Positive Affect berpengaruh positif terhadap Perceived Ease Of Use Task Management
H5: Negative Affect positively affects Perceived Usefulness Task Management
H6: Negative Affect berpengaruh positif terhadap Perceived Ease Of Use Task Management

Perceived Ease of Use, Perceived Usefulness, Attitude toward Using, and Behavioral Intention in Technology Acceptance Model

Based on previous literature and research conducted by Hoong, Thi and Lin 2017 that there is a consistent influence relationship between perceived ease of use, perceived usefulness, attitude toward using and behavioral intention. An individual's actual use of technology is determined by behavioral purposes, which are determined by perceived usability and perceived ease of use. The perceived value of usability is that an individual's level of trust in the use of technology will improve the performance of his or her work, and the perception of ease of use is the extent of an individual's belief that utilizing technology will be easy.

H7: Perceived Ease of Use berpengaruh positif terhadap Perceived Usefulness Using Task Management
H8: Perceived Ease of Use berpengaruh positif terhadap Attitude Toward Using Task Management
H9: Perceived Usefulness positively affects Attitude Toward Using Task Management
H10: Attitude Toward Using positively affects Behavioral Intention Task Management

METHOD

This study uses a type of quantitative research. Quantitative research is a type of research used to prove values by measuring relationships between variables, so that data can be obtained in the form of numbers so that they can be analyzed in a statistical order (Noor, 2011: 38). This research method is used to find out about the Affective Technology Acceptance Model (ATAM) Analysis of the use of Task Management applications across employees of PT Collega Inti Pratama.

Population

Population is the entire subject of the study conducted (Arikunto, 2006: 131). This population can be used to mention the entire member of a region/place that is used as the target of research conducted (Noor, 2011: 147). The population in this study is the users of task management application which numbered 150 of all employees of PT Collega Inti Pratama.

Sample
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

The sample is a portion of the elected members of the population (Suhartanto, 2014: 230). The sample in this study was a user of the Task Management application from all employees of PT Colleqa Inti Pratama.

The samples in this study were taken by a non probability sampling method. The technique used in this method is purposive sampling. Purposive sampling or conditional sample is the selection of samples based on certain criteria.

According to Notoatmodjo, 2003 initiated by Setyarini (2007: 41) to find out the sample size of representatives obtained based on a simple formula is as follows:

\[
\begin{align*}
N \\
n = \frac{N}{d^2 + 1}
\end{align*}
\]

Where:
N: Npopulation
n: The size of the sample
d: the desired level of trust/accuracy of 10%.

With the formula can be calculated the sample size of the population of 150 by taking the level of trust (d) = 10%, as follows:

\[
\begin{align*}
n &= \frac{N}{d^2 + 1} \\
150 &= (150) (0.10)^2 + 1 \\
150 &= 60
\end{align*}
\]

Sampling Techniques
This research uses purposive sampling techniques. Purposive sampling is a technique used in sampling that is based on criteria. The criteria of users (users) who were sampled in this study are: 1) Users of task management applications all employees of PT. Colleqa Inti Pratama and 2) Have used the Task Management application at least 1 time.

Data Collection Techniques
Questionnaire is a list of questions or statements that have previously been formulated by researchers who are then answered by respondents (Sekaran, 2006). This questionnaire is disseminated by sharing some of a set of questions/ written statements for respondents to answer (Sugiyono, 2008). The questionnaire in this study is intended for users of task management application at PT. Colleqa Core Pratama and have used it at least 1 time. Then the instrument used to measure the variable of this study is the Likert scale of 4 points.

Respondents’ answers are a choice of five alternatives, namely:
S: Agree CS: Simply Agree
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

KS: Disagree: Disagree
Each answer has a value:
S: 4CS : 3
KS: 2TS : 1

Validity Test
According to Sekaran (2006: 248) in (Sarjono & Julianita, 2013: 35) defining validity is as evidence of instruments, techniques and processes used in measuring a concept so as to actually measure the intended concept. This validity test aims to find out the validity of a question contained in the questionnaire.
An indicator can be said to be valid can be seen with the following conditions (Arikunto, 2006: 178):
\[\text{Result } r_{\text{calculate}} > r_{\text{table}} \text{ = valid Result } r_{\text{calculate}} < r_{\text{table}} = \text{invalid} \]

Reliability Test
According to Sekaran (2006: 40) in (Arikunto, 2006: 35) defining reliability is a measurement that shows that the extent to which the measurement is done without bias (error-free). This reliability test aims to measure the consistency of a person's answers to question items contained in the questionnaire.
This test will only be done for valid items, where the valid items are obtained through validity testing. To measure reliability using alpha cronbach statistical tests. According to Nunnally (1967) in Ghozali (2005: 140) states that variables can be said to be reliable if they give a value of $\alpha > 0.60$.

Data Analysis
Classical assumption tests include normality, heteroskedasticity, multicollinearity and autocorrelation tests. The results of the processing are as follows.

Normality Test
The normality test is a comparison between the data owned with normal distributed data that has the same mean and standard deviation as the data owned (Sarjono & Julianita, 2013: 53). Normality test is done to find out whether or not the distribution of data. Normality testing becomes an important thing because it becomes one of the requirements of parametric testing, which must be distributed normally.

Heteroskedasticity Test
According to Wijaya (2009: 124) in Sarjono & Julianita (2013: 66) defining heteroskedasticity is a state that indicates that variable variance is not the same (constant) between observations with other observations. To detect the or absence of heteroskedasticity, there are several statistical tests that can be used including: glejer test, park test, White test and scatterplot test.
The occurrence of heteroskedasticity can be characterized by points that form certain patterns that are regular such as wavy, widening, then narrowing. However, if heteroskedasticity
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

does not occur, it can be characterized by the spread of points above and below the number 0 on the Y axis without forming a specific pattern (Ghozali, 2005: 162).

Multicollinearity Test

The multicollinearity test aims to find out if regression models found correlations between free variables. A good model will not have a correlation between free variables. If free variables occur correlations then the variables are not orthogonal where free variables whose correlation values between fellow free variables are equal to zero (Ghozali, 2005: 150).

The multicollinearity test can be detected using tolerance and Variance Inflation Factor (VIF) values. Both values can show which independent variables are described by other independent variables. The value usually used to indicate the presence of multicollinearity is VIF ≥ 10 or equal to the value of Tolerance ≤ 0.10 (Ghozali, 2005: 95).

Autocorrelation Test

The Autocorrelation test aims to test whether in a linear regression model there is a correlation between a confounding error between a series of observations in the current period and a disruptor error in the previous period. Autocorrelation testing can be done with several tests including the Durbin-Watson test, the Lagrange Multiplier test of Q statistics, and the Run Test (Sarjono & Julianita, 2013: 80).

Multiple Linear Regression Analysis

Regression analysis is an analysis used to measure the influence of independent variables with dependent variables (Sarjono & Julianita, 2013: 91). In this study, the bound variables were Perceived Ease of Use, Perceived Usefulness, Attitude Toward Using and Behavioral Intention. As for the free variables are Positive Affect and Negative Affect. In this study, the data analysis using Multiple Regression Analysis with the help of SPSS. The general equations of linear regression are as follows (Devi and Suartana, 2014):

\[
Y_1 = a + b_1X_1 + b_2X_2 + e
\]

Where:
- \(Y_1\): Perceived Ease of Use
- \(X_1\): Positive Affect
- \(X_2\): Negative Affect
- \(a\): Constant
- \(b\): Regression Coefficient
- \(e\): Error / Bully Error Rate

\[
Y_4 = a + b_1X_1 + b_2X_2 + b_3X_3 + e
\]

Where:
- \(Y_4\): Behavioral Intention
- \(X_1\): Positive Affect
- \(X_2\): Negative Affect
- \(X_3\): Attitude Toward Using
- \(a\): Konstanb
- \(b\): Regression Coefficient
- \(E\): Error / Bully Error Rate

Model Accuracy Test

F Test (Simultaneous Test)

The F test is intended to determine the extent to which independent variables used are able to explain dependent variables simultaneously. In determining \(F_{table}\), the significance level
used is 5% with the degree of freedom df = (n - k), where it is explained that n is the number of samples and k is the number of independent variables. The steps used in the f test test are as follows Djarwanto & Subagyo (1993: 269):

1) Determination of hypothesis formulation
 H0: insignificant regression coefficient H1: significant simultaneous regression coefficient
2) Determine the level of significant α = 5%, with a significant level value of 95% with a degree of freedom (k - 1, n - k).
3) Determine testing criteria
 H0 is accepted when $F_{\text{calculated}} \leq F_{\text{table}}$ H0 is rejected if $F_{\text{calculated}} \geq F_{\text{table}}$
4) Conclusions are made by comparing the results obtained, then H0 is accepted or rejected.

Determination (R2)
The coefficient of determination is one of the statistical values that can be used to measure how far the model's ability to explain the variation of dependent variables, the value of R2 lies between 0% to 100%. If the R2 obtained is close to 100%, then it can be said that the stronger the model describes the variation of the free variable against the bound variable. Conversely, if it is close to 0 then the weaker the variation of the variable freely describes the bound variable (Ghozali, 2005: 83).

Hypothesis Test

Test t
According to Ghozali (2005: 105) this partial test (t test) is used to determine the effect of each independent variable on a dependent variable. The t test is a test performed to see if an independent variable can individually have a significant effect on dependent variables by assuming that other variables are constant.

The decision is based on the comparison of the titung values of each regression coefficient with a ttable. In determining the value of the ttable, the significance value used is 0.05 (5%) with the degree of freedom df = (n - k). Using the following testing criteria.

1) Determining hypothesis zero and alternative hypotheses
 H0: $b_1 = 0$, meaning that there is no influence between variable x and variable y individually.
 Ha: $b_1 \neq 0$, meaning that there is an influence between variable x on variable y individually.
2) Menentukan level of signifikan $\alpha = 0.05$; Df = $(\alpha / 2; n - k 1)$.
3) Testing criteria
 H0 is accepted if $-t_{\text{calculated}} \leq t_{\text{table}} \leq t_{\text{calculated}}$
 Ha rejected if $-t_{\text{calculated}} \leq t_{\text{table}} \leq t_{\text{calculated}}$ or $t_{\text{count}} \geq t_{\text{table}}$
4) Conclusion dibuat dengan compare the results obtained, then H0 accepted or rejected.

Mediation Effect Test with Path Analysis
Baron and Kenny (1986) in Latan (2013: 109) states that the mediation effect indicates the relationship between free variables and bound variables through connecting variables. This
means that the effect of free variables on bound variables can be directly or can be through mediation variables. This effect test aims to find out the direct effect (direct effect) and indirect effect (indirect effect). To be able to see its effects can use the path analysis method. Path analysis according to Sugiyono (2011:297) is an extension of linear regression analysis to test complex models using multiple regression equations.

For direct effects, obtained from the results of SPSS processing on standardized coefficient. For indirect influence is obtained from the number of multiplication standardized coefficients of one of the variables in the first equation and the second equation. Then for the conclusion can be seen if the indirect influence is greater than the direct influence, then the mediation variable used, has been able to mediate.

RESULTS AND DISCUSSION
Multiple Linear Regression Testing Analysis
Analysis of Multiple Linear Regression Testing Equation-1

Multiple linear regression aims to test positive affect variables, negative affect with perceived ease of use variables either partially or simultaneously. The results can be seen in the following tabel.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Itself.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.542</td>
<td>.417</td>
<td>3.701</td>
<td>.000</td>
</tr>
<tr>
<td>AND THE</td>
<td>.735</td>
<td>.102</td>
<td>.578</td>
<td>7.204</td>
</tr>
<tr>
<td>ON</td>
<td>-.149</td>
<td>.089</td>
<td>-.136</td>
<td>-1.689</td>
</tr>
</tbody>
</table>

a. Dependent Variable: PEOU
Source: Primary data processed, 2021

Based on Table 4.32 above known regression equations are known:

\[\begin{align*}
Y &= \alpha + B_1X_1 + B_2X_2 + \epsilon \\
Y &= 1.542 + 0.578x_1 - 0.136x_2 + \epsilon \\
t_{\text{count}} &= (7.204)(-1.689) \\
F_{\text{count}} &= 28.759 \\
R^2 &= 0.367
\end{align*} \]

Information:
Y: Perceived Ease of Use
\(\alpha \): Constant value, i.e. value Y if \(X_1 \), \(X_2 \)
\(\beta \): A directional value as a determinant of a forecast (prediction) that indicates the value of the increase (+) or decrease (-) of variable Y.
\(x_1 \): Positive Affect
\(x_2 \): Negative Affect
Other variables that affect
The interpretation of the regression equation is as follows:
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

1) The constant value is 1.542 Meaning that if the Positive affect and negative affect value is 0 then the Perceived Ease of Use value is 1.542

2) Positive affect variable regression coefficient value of 0.578 Means that if other independent variables remain and Positive affect increases by 1 unit, then Perceived Ease of Use increases by 0.578 x 1 = 0.578 units increase or vice versa if other independent variables are fixed value and Positive affect decreases by 1 unit then Perceived Ease of Use decreased by 0.578 x 1 = 0.578 units decreased.

3) Negative affect variable regression coefficient value of -0.136. This means that if other independent variables remain and negative affect increases by 1 unit, then Perceived Ease of Use decreases by -0.136 x 1 = -0.136 units increase or vice versa if other independent variables are fixed value and Negative affect decreases by 1 unit then Perceived Ease of Use decreases by -0.136 x (-1) = 0.136 units increase.

4) Positive affect value Sig 0.000, because Sig 0.000 < 0.05 can be concluded Positive affect affect Perceived Ease of Use.

5) Negative affect value Sig 0.094, because Sig 0.094 > 0.05 it can be concluded negative affect does not affect positively perceived ease of use.

Analysis of Multiple Linear Regression Testing Equation-2

Multiple linear regression aims to test perceived ease of use, positive affect and negative affect variables against perceived usefulness both partially and simultaneously. The results can be seen at the following table.

Table 2. Equation 2
Perceived Ease of Use, Positive Affect dan Negative Affect terhadap Perceived Usefulness

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Itself.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.863</td>
<td>.292</td>
<td>2.957</td>
</tr>
<tr>
<td>AND THE</td>
<td>.023</td>
<td>.083</td>
<td>.021</td>
<td>.273</td>
</tr>
<tr>
<td>ON</td>
<td>.108</td>
<td>.059</td>
<td>.117</td>
<td>1.824</td>
</tr>
<tr>
<td>PEOU</td>
<td>.654</td>
<td>.066</td>
<td>.783</td>
<td>9.909</td>
</tr>
</tbody>
</table>

a. Dependent Variable: PU
Source: Primary data processed, 2021

Based on Table 4.33 above known regression equations are: Y: α + B1X1 + B2X2 + B3X3 + €

Y: 0.863 + 0.783X1 + 0.021X2 + 0.117X3 + €

t_count: (9.909) (1.824) (0.273)
F_count: 51.637

Sig: (0.001) (0.000) (0.002)

R²: 0.613

Information:
Y: Perceived Usefulness
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

α: Constant value, i.e. value Y if X_1, X_2, X_3
β: A directional value as a determinant of a forecast (prediction) that indicates the value of the increase (+) or decrease (-) of variable Y.

x_1: Perceived Ease of Use
x_2: Positive affect
x_3: Negative affect

Other variables that affect Y

The interpretation of the regression equation is as follows.

1. The constant value is 0.863 Meaning that if the Positive Affect, Negative Affect and Perceived Ease of Use value is 0 then the Perceived Usefulness value is 0.863

2. Positive affect variable regression coefficient value of 0.021. This means that if other independent variables remain and Positive affect increases by 1 unit, perceived usefulness increases by 1 unit.

 $0.021 \times 1 = 0.021$ units increase or vice versa if other independent variables are fixed value and Positive affect decreases by 1 unit then Perceived Usefulness decreases by $0.021 \times 1 = 0.021$ units of decline.

3. Negative affect variable regression coefficient value of 0.117. This means that if other independent variables remain and Negative affect increases by 1 unit, perceived usefulness increases by 0.117 units increase or vice versa if other independent variables are fixed value and Negative affect decreases by 1 unit then Perceived Usefulness decreases by $0.117 \times 1 = 0.117$ units decrease.

4. The regression coefficient value of the Perceived Ease of Use variable is 0.783. This means that if other independent variables remain and Perceived Ease of Use increases by 1 unit, then Perceived Usefulness increases by $0.783 \times 1 = 0.783$ units increases or vice versa if other independent variables are fixed in value and Perceived Ease of Use decreases by 1 unit then Perceived Usefulness decreases by $0.783 \times 1 = 0.783$ units decreases.

5. Perceived Ease of Use nilai Sig 0.000, karena Sig 0.000 < 0.05 maka dapat disimpulkan Perceived Ease of Use mempengaruhi Perceived Usefulness.

6. Positive affect value Sig 0.785, because Sig 0.785 > 0.05 can be concluded Positive affect does not affect Perceived Usefulness.

7. Negative affect value Sig 0.071, because Sig 0.071 > 0.05 can be concluded Negative affect does not affect Perceived Usefulness.

Analysis of Multiple Linear Regression Testing Equation-3

Multiple linear regression aims to test perceived usefulness and perceived ease of use variables against attitude toward using both partially and simultaneously. The results can be seen in the following tabel.

<table>
<thead>
<tr>
<th>Table 3. Equation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Usefulness dan Perceived Ease of Use terhadap Attitude Toward Using</td>
</tr>
</tbody>
</table>
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

Based on the above table known regression equations are:

\[Y: \alpha + B1X1 + B2X2 + \epsilon \]
\[Y: 0.212 + 0.450X1 + 0.392X2 + \epsilon \]

\[\text{F calculated: } (4.658) \quad (4.056) \quad F \text{ count : 84,013} \]
\[R^2: 0.629 \]

Information:

\(Y: \) Attitude Toward Using
\(\alpha: \) Constant value, i.e. value \(Y \) if \(X1, X2 \)
\(\beta: \) A directional value as a determinant of a forecast (prediction) that indicates the value of the increase (+) or decrease (-) of variable \(Y \).
\(x_1: \) Perceived Usefulness
\(x_2: \) Perceived Ease of Use
\(\epsilon: \) Other variables that affect \(Y \)

The interpretation of the regression equation is as follows:

1. The constant value is 0.212 Meaning that if perceived usefulness and perceived ease of use are 0 then the attitude toward using value is 0.212.

2. The regression coefficient value of the Perceived Usefulness variable is 0.450. This means that if other independent variables remain and Perceived Usefulness increases by 1 unit, then Attitude Toward Using increases by 0.450 \(x 1 = 0.450 \) units increases or vice versa if other independent variables are fixed in value and Perceived Usefulness decreases by 1 unit then Attitude Toward Using decreases by 0.450 \(x 1 = 0.450 \) units decreases.

3. Perceived Ease of Use variable regression coefficient value of 0.392 Means that if other independent variables remain and Perceived Ease of Use increases by 1 unit, then Attitude Toward Using increases by 0.392 \(x 1 = 0.392 \) units increases or vice versa if other independent variables are fixed value and Perceived Ease of Use decreases by 1 unit then Attitude Toward Using decreased by 0.392 \(x 1 = 0.392 \) units of decline.

4. Perceived Usefulness value sig 0.000, because Sig 0.000 < 0.05 can be concluded Perceived Usefulness affects Attitude Toward Using.

5. Perceived Ease of Use nilai Sig 0.000, karena Sig 0.000 < 0.05 maka dapat disimpulkan Perceived Ease of Use mempengaruhi Attitude Toward Using.

Analysis of Multiple Linear Regression Testing Equation-4
Multiple linear regression aims to test the variables Positive affect, Negative affect and Attitude Toward Using against Behavioral Intention both partially and simultaneously. The results can be seen in the following table.

Table 4.35: Equation 4
Positive Affect, Negative Affect and Attitude Toward Using terhadap Behavioral Intention

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Itself.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Be ta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.020</td>
<td>.260</td>
<td>.075</td>
</tr>
<tr>
<td></td>
<td>ATU</td>
<td>.845</td>
<td>.057</td>
<td>.827</td>
</tr>
<tr>
<td></td>
<td>AND THE</td>
<td>.139</td>
<td>.075</td>
<td>.104</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>.042</td>
<td>.053</td>
<td>.037</td>
</tr>
</tbody>
</table>

| a. Dependent Variable: BI |

Based on the table above, regression equations are known, namely:

\[Y: \alpha + B_1 X_1 + B_2 X_2 + B_3 X_3 + \epsilon \]

\[Y: 0.020 + 0.104 X_1 + 0.037 X_2 + 0.827 X_3 + \epsilon \]

\[t_{count}: (1,856) (0.794) (14,742) \]

\[F_{count}: 124,643 \]

\[\text{Sig: } (0.067) (0.429) (0.000) \]

\[R^2: 0.792 \]

Information:

Y: Behavioral Intention

\(\alpha: \) Constant value, i.e. value Y if \(X_1, X_2, X_3 \)

\(\beta: \) A directional value as a determinant of a forecast (prediction) that indicates the value of the increase (+) or decrease (-) of variable Y.

\(x_1: \) Positive affect

\(x_2: \) Negative affect

\(x_3: \) Attitude Toward Using

Other variables that affect Y

The interpretation of the regression equation is as follows:

1. The constant value is 0.020. This means that if the Positive Affect, Negative Affect and Attitude Toward Using value is 0 then the value of Behavioral Intention is 0.212.

2. Positive Affect variable regression coefficient value of 0.104. This means that if other independent variables remain and Positive Affect increases by 1...
unit, then Behavioral Intention increases by $0.104 \times 1 = 0.104$ units increase or vice versa if other independent variables are fixed in value and Positive Affect decreases by 1 unit then Behavioral Intention decreases by $0.104 \times 1 = 0.104$ units decrease.

3. Negative Affect variable regression coefficient value of 0.037. This means that if other independent variables remain and Negative Affect increases by 1 unit, then Behavioral Intention increases by $0.037 \times 1 = 0.037$ units increase or vice versa if other independent variables are fixed in value and Negative Affect decreases by 1 unit then Behavioral Intention decreases by $0.037 \times 1 = 0.037$ units of decline

4. The regression coefficient value of the Attitude Toward Using variable is 0.827. This means that if other independent variables remain and Attitude Toward Using increases by 1 unit, then Behavioral Intention increases by $0.827 \times 1 = 0.827$ units increase or vice versa if other independent variables are fixed value and Attitude Toward Using decreases by 1 unit then Behavioral Intention decreases by $0.827 \times 1 = 0.827$ units decreases.

5. Positive affect value Sig 0.067, because Sig 0.067 > 0.05 then it can be concluded positive affect does not affect behavioral intention.

6. Negative affect value Sig 0.471, because Sig 0.429 > 0.05 can be concluded Negative affect does not affect behavioral intention.

7. Attitude Toward Using a Sig value of 0.000, because Sig 0.000 < 0.05 can be concluded attitude toward using affects behavioral intention.

CONCLUSION

Based on the results of analysis of research data on the influence of Positive Affect and Negative Affect on users of PT Colleqa Inti Pratama in using task management (TM) applications, some conclusions have been produced as follows.

1) Positive Affect had a significant effect on perceived ease of use, with a contribution of 34.15%. In other words, the more supporting features provided by task management applications make it easier to operate the application and facilitate the work.

2) Perceived Ease of Use had a significant effect on Perceived Usefulness, with a contribution of 60.60%. The easier it is to use the Task Management application, the more benefits for users.

3) Perceived Usefulness had a significant effect on Attitude Toward Using, with a contribution of 33.89%. The more benefits obtained by users will further encourage interest in using the application.

4) Perceived Ease of Use had a significant effect on Attitude Toward Using, with a contribution of 29.01%. The easier it is to use the application, the more it encourages interest in using the application.

5) Attitude Toward Using had a significant effect on Behavioral Intention, with a contribution of 73.27%. In other words, the greater the interest in using the application will further encourage user behavior to use the application.

REFERENCES
Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)

Analyzing Customers’ Acceptance towards Task Management Application Using Affective Technology Acceptance Model (ATAM)