The nanoparticle formula optimization from Temulawak extract (Curcuma xanthorrhiza) as adjuvant therapy


  • Greesty Finotory Swandiny Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta
  • Safira Nafisa Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta
  • Rahmatul Qodriah Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta
  • Gumilar Adhi Nugroho Faculty of Pharmacy, Universitas Pancasila, South Jakarta, Jakarta
  • Muhammad Taher Bakhtiar Kuliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Pahang



nanoparticle formula, Temulawak, adjuvant therapy


Temulawak extract was synthesized using temulawak sodium alginate. The nanoparticle formula was obtained by combining the characteristics of temuwak extract and temusawak. The microbeads were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The size of Alg-Curcuma was measured at SEM. The particle size distribution of the sample was analyzed using FTIR spectra. The results showed that the size of the resulting beads is microparticle in size. It was found that the temurawak extract is a good candidate as an anticancer agent. Therefore, there are several recommendations that can be done to optimize the synthesis of the material. The study reported that the recommended parameter is 12.5 kV with a flow rate of 0.1 mL/h (first batch synthesis).


Aghebati?Maleki, A., Dolati, S., Ahmadi, M., Baghbanzhadeh, A., Asadi, M., Fotouhi, A., Yousefi, M., & Aghebati?Maleki, L. (2020). Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. Journal of Cellular Physiology, 235(3), 1962–1972.

Ali, E. S., Sharker, S. M., Islam, M. T., Khan, I. N., Shaw, S., Rahman, M. A., Uddin, S. J., Shill, M. C., Rehman, S., Das, N., Ahmad, S., Shilpi, J. A., Tripathi, S., Mishra, S. K., & Mubarak, M. S. (2021). Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Seminars in Cancer Biology, 69.

Chivere, V. T., Kondiah, P. P. D., Choonara, Y. E., & Pillay, V. (2020). Nanotechnology-based biopolymeric oral delivery platforms for advanced cancer treatment. Cancers, 12(2).

Croissant, J. G., Butler, K. S., Zink, J. I., & Brinker, C. J. (2020). Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications. Nature Reviews Materials, 5(12).

de la Torre, P., Pérez-Lorenzo, M. J., Alcázar-Garrido, Á., & Flores, A. I. (2020). Cell-based nanoparticles delivery systems for targeted cancer therapy: Lessons from anti-angiogenesis treatments. In Molecules (Vol. 25, Issue 3).

Dong, X., Wu, Z., Li, X., Xiao, L., Yang, M., Li, Y., Duan, J., & Sun, Z. (2020). The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies. International Journal of Nanomedicine, 15.

Gavas, S., Quazi, S., & Karpi?ski, T. M. (2021). Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16(1).

Gomes, H. I. O., Martins, C. S. M., & Prior, J. A. V. (2021). Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials, 11(4).

Hafeez, M. N., Celia, C., & Petrikaite, V. (2021). Challenges towards targeted drug delivery in cancer nanomedicines. Processes, 9(9).

Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3).

Kashkooli, F. M., Soltani, M., & Souri, M. (2020). Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 327.

Liu, Y., Miyoshi, H., & Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 120(12), 2527–2537.

Oroojalian, F., Beygi, M., Baradaran, B., Mokhtarzadeh, A., & Shahbazi, M. A. (2021). Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small, 17(12).

Raj, S., Khurana, S., Choudhari, R., Kesari, K. K., Kamal, M. A., Garg, N., Ruokolainen, J., Das, B. C., & Kumar, D. (2021). Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology, 69.

Rastogi, D., & Asa-Awuku, A. (2022). Size, Shape, and Phase of Nanoscale Uric Acid Particles. ACS Omega, 7(28).

Shrestha, S., Wang, B., & Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279.

Tang, L., Mei, Y., Shen, Y., He, S., Xiao, Q., Yin, Y., Xu, Y., Shao, J., Wang, W., & Cai, Z. (2021). Nanoparticle-mediated targeted drug delivery to remodel tumor microenvironment for cancer therapy. International Journal of Nanomedicine, 16.

Thakkar, S., Sharma, D., Kalia, K., & Tekade, R. K. (2020). Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomaterialia, 101.

Wang, Y., Pi, C., Feng, X., Hou, Y., Zhao, L., & Wei, Y. (2020). The influence of nanoparticle properties on oral bioavailability of drugs. International Journal of Nanomedicine, 15.

Zein, R., Sharrouf, W., & Selting, K. (2020). Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. Journal of Oncology, 2020.